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ABSTRACT

Let X be an dbservation from a p-variate normal distribution (p ~ 3)

with mean vector e and unknown positive definite covariance matrix 
~~~
. It

is desired to es~imate 0 under the quadratic loss L(6,0,~) = (6_ 0) tQ( 6_ 0) / t r(Q~),

where Q is a known positive definite matrix. Estimators of the following

form are considered :

6C
(x w) = (I - caQ W~~/(XtW~~X)) X

where W is a pxp random matrix with a Wishart (~,n) distribution (independent

of X), ~ is the minimum characteristic root of (QW)/(n-p-1) and c is a positive

constant. For appropriate values of c, 6~ is shown to be minimax and better

than the usual estimator ~
0(X) = X.
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1. Introduction

• Assume X = (X 1,..  . ~~~~ is a p-dimensional random vector (p~3) which is

normally distributed with mean vector 8 = (8 1, . . .  8)t and positive definite

covariance matrix ~~~. It is desired to estimate 8 by an estimator ~ = (6 k, . .

under the quadratic loss

L(6,O ,~) = (ô_0)tQ(6_0)/tr(Q~) ,

where Q is a positive definite (pxp) matrix.

The usual mininax and best invariant estimator for 0 is 50(X) = X. Since

Stein (1955) first showed that could be improved upon for Q=~=I (the

identity matrix), a considerable effort by a number of authors (see the

references) has gone into finding significant improvements upon ~~~~~
. For the

most part these efforts have been directed towards the problems where either

was known (or known up to a multiplicative constant) or where Q=1 1 (a rather

unrealistic assumption). For unknown ~ only a few special situations have

been considered . Berger and Bock (1976a) and (l976b) found minimax estimators

• (better than ~~) for problems in which ~ was an unknown diagonal matrix or

could bc reduced to one. Gleser (1976) found minimax estimators under the

assumption that the characteristic roots of Q~ have a known lower bound.

In this paper the fundamental problem of completely unknown 4 will be

considered . It wifl be assumed that an estimate W of ~ is available , where

IV has a Wishart distribution with parameter ~ and n degrees of freedom, and

is independent of X. Let Chmin (A) denote the minimum characteristic root of

A , and define

• = E (fl_P_l)Chmax (Q
~
’W
~
’fl~’ = chmjn(QW )/(n_p_l).

The cstimators considered in this paper will be of the form

— ‘ — l
(1.1) 6c(X W) = ( I  — 

ç
~Q IV )x ,

xtw
_

x

whore c is a positive constant. For known ~~~, estimators of this form (with (n.p-l)W~~

I .
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replaced by 4~
1) were shown to be minimax in Bock (1974) and Berger (l976b),

providing 0 ~ c $ 2(p-2). In this paper & is shown to be minimax for

0~~~c < c- n,p

where the ~~~ are solutions to equation (2.17), and are numer ically calcu-

lated in Table 1 for certain values of n and p.

Table 1

Values of cn ,p

..
~~~~ 

8~~ 10 12 14 16 18 20 25 30
H P’~..

3 .14 .41 .72 .88 1.03 1.10 1.23 1.51 1.53
4 .65 1.37 1.88 2.27 2.42 2.60 2.81 3.07 3.12

5 1.83 2.85 3.37 3.80 4.02 4.26 4.78 4.87
• 6 1.71 3.32 4.27 4.81 5.33 5.66 6.36 6.50

7 3.42 4.99 5.78 6.42 6.96 7.92 8.14
8 2.50 5.15 6.57 7.64 8.19 9.24 9.84

9 4.50 7.02 8.40 9.22 10.60 11.28
• 10 2.6 1 6.79 8.90 10.25 11.98 12.84

11 5.78 9.15 10.84 13.14 14.24

12 2.73 8.42 11.10 14.20 15.65
7.11 11.09 15.48 17.15

• 14 2.43 9.70 15.74 18.44
15 7.93 16.61 19.51
16 2.26 16.67 20.62
17 16.67 21.56

18 16.34 22 .38
19 22.83
20 23.47

~~- 
~~~~~~~~~~~~~~~~~~~~~~~~~ •
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2. Minimaxity of

The notation E(Z) wi l l  be used for the expectation of Z. Subscripts on

• E wil l  refer to parameter values , while superscripts on E will refer to the

random variable~. with respect to which the expectation is to be taken . When

obvious , subscripts and superscripts will be omitted .

For an estimator , 6 , define the risk function

R( 6 ,e ,*) = E~’~ [L(6(X,w),e,~ )]

• For notational convenience define n~ = (n-p-l) and

= tr (Q~) [R( 6 c ,0 ,t) - R( 6 0 O ,f) ]

The estimator is clearly minimax (and as good as or better than 60) pro-

viding Ac(8~~
) ~ 0 for all 0 and ~~~.

Expanding the quadratic loss L for 6c verifies that

t- 1 2 2 t - 1 -1 -l
(2.1) A = -2E[ c~(X-0) W X 

~ 
+ E[ c ~ X W Q W X 

~C X i ( X

As in Berger (1976b) an integration by parts with respect to the X1 gives

(x_ e) t w4x 
— 

tr(~W
1
) 

-

X W X  X W ~~X (X I(X)

Thus (2.1) becomes

(2.2) = -E[ C~ {2tr(fW~~) - 
_________ - 

CcZX IV Q W X  }]
C (X W  X) X W  X X W

Note that

aXtW Q ~~W ’X ci 
= .

X~W X Ch~ ~~t~1) n*

Using this in (2.2) gives

t -l -I
(2.3) 

~ -E[ 
‘ (2tr(~W~~) - 

4X W X 
- 

~~
- }J

( X W  X) x w x

• - -~~~~~~~~~~~~~~ •
~~~~ • • L ~~~~~~~~~~~~~~~~ -.. ~~~~~ • • • 
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In this express ion , perform the change of variables

Y = , V =

Note that V is now Wishart with parameter I and n degrees of freedom, and that

• ci - chmin (t~Q~~V)/n* Clearly (2.3) becomes

• (2.4) A ~ -E[ ~ ~~ 
{2tr(V~~) - 

4YtV 2Y 
-

( Y V  Y) Y V  Y

For convenience , define

B = ch . (Q~) , Z = ~/I~I , and = ~ Q~~/ B

Note that chmin (1*) = 1. Liile (2.4) can then be rewritten

(2.5) A ~ 
~~~~~~~ 

E~
’
[ 

1y 1
2 E

V{ 
ch~~~(~;V) 

(2tr(V ’) - _______ - 

~*)
~ ] .

To show that ~ 0 it suffices to show for all ZEU~ (the unit p-sphere) and

all ~~* with chmin(1*) = 1, that the following inequality holds :

(2.6) EV{ 
c h . (~*V) 

[2tr (Vu) - 
4Z~V

2Z 
- 

~*)}~ 
0

( Z V  2) Z V  Z

(Note that the distribution of V does not depend on Z or on

t

• Let r be a pxp orthogonal matrix such that rZ = (1,0,.. .,0) . Define

v~ = rVrt and = r~*r t . Clearly V* is also Wishart (I) and chmin(~
:) =

For convenience , let v1 denote the (1,1) element of (V*)
’, v2 denote the (1,1)

element of (V*)2, and let

• p (V*) = [2tr{ (V*Y 1 }.~ 4vlv i]

It is straightforward to verify that under the above change of variables for

V , (2.6) becomes

ch . (t.,V*)mm (~ (V* ) - ~~1}

C •

I 

~~~~~~~~~~~~ 
•
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Since Chajn(~2
) = 1, it is clear that

(2.8) c h i (t zV*) ~ ch . (V~)

Also if aEU (i.e. la l  = 1) then

C h i (~ZV*) ~ a t ~~
V 4 2 a

Choosing a to be a1, the characteristic vector of the root 1 of it follows

that

(2.9) c h i (t 1V*) ~ (a
l)tV*al

• For convenience define

= tV~: p (V*)< c/n*1

let denote the complement of 
~~~~~

, and let IA
(V*) denote the usual indicator

function on A. Using (2.8) and (2.9) it then follows that (2.7) will hold

(and 6
C will be minimax) if

i t 1 ch . (V*)
(2.10) EV* ((a ) V *a [p(V*) - ~*]I~~(V*) + 

mm [p(V*) - ~.]J.(V*)} 2 0

for all a’ E U .

To simplify this expression further, let

• I 1 0 . . . 0
T =  0

s
.0

where S is a (p-l)x (p-l) orthogonal matrix such that

Ta1 = (b, (l_b 2)~ p,...,O)
t (-1 < b ~ 1).

In (2.10), performing the change of variables V = TV*Tt . (again Wishart (I))

• then gives as the condition for minimaxity

(2.11) FY { (T~~~ V(T~~ [p(V) - £ )I (V) + 

ch rnin (V) [p(V) - ~~JI~~(V)} ~ 0

for all a’ E U .

-. 
— 

I 
___  
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(Note that v1 = (V* ’)1, = (TtV~~T)
11 = (V~~)11 and likewise v2 = (V 2)11.)

The inequality (2:11) can be rewritten

{ p (V)v [(Tal)tV(Tal)I CV) + ch . (V)I— (V)]} 

• 

•

(2 12) c < 
nun

E {v 1 [ (Ta ) V(Ta )I~~(V) + Cnmin(V)I~~
(V)])

Not e that

(Ta l)tV( Tal) = h2(V11-V22) +b (1-b
2
)~ (V 12+V21) + V22

• Hence defining

r0(c) = E~
’{p(V)v1~~[V 22I~~(V) + c h i ~ (V) Ij~~(V)]} .

= E~
’{p(V)v1~

1 (V 11—V 22) I~~ (V) } ,

t2(c) = EV{p(V)v,~~ (V,2+V21)I~~ (V) } •

= EV{v,~~[V22I~~(V) + Chmin (V)I
~~
(V))} ,

= EV {v,~~(V11
_V
22) I~~ (V) } , and

ty (c) = E~
’(v 1~~(V12 + V21)I~~(V)}

it is clear that (2.12), the condition for minimaxity, can be rewritten

n’[10(c) 
+ r

1(c)b
2 

+ t2(c)b (l-b
2
)~J(2.13) C 

~~ 2+ T1
1 (c)b +

for all -l ~ b s 1. Finally, defining b = (b,(1-b2)~)

1i0(c)+11(c) T2(c)/2\ fT 0
t (c)+1 1 ’(c) t21(c)/2

• 
A(c) 

=(  
) 
, and B(c) = (

t0(c) / 2~~~~
2 t0

t(c)

line (2.13) becomes

n*btA ‘c’b(2.14) c ~
b B(c)b

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •
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Now for fixed b, the nonnegative solutions to (2.14) lie in an interval

0 ~ c ~ c~ . This~can most easily be seen by looking at (2.11) (an expression

equivalent to (2.14)) and noting that the left hand side is decreasing in c.

Thus defining

clip = -i}~~i ~~

it follows that if

• (2.15) 0 < c ~ c
- n ,p

• then (2.14) will be satisfied for all -l s b ~ 1, and hence 6
c will be minimax.

• To get a more explicit equation for c ,~note from equation (2.12)n,p

(an equivalent expression to (2.14)) that B(c) is positive definite. Hence

if (2.14) holds for all -1 ~ b ~ 1 , then

• (2.16) c ~n*chmin[B(cY
lA(c)] . 

•

Thus (2.l5)~* (2.14) for all -l ~ b ~ 1 ~ (2.16). It is also clear that the

reverse implications hold , so that

4 
Ic :  0 ~ c ~ c~~~ } = (C :  c 

~n*chmun
[B(c)

~~A(c)]} 
.

It is also easy to check that

c ~n*ch . (B(c )~~A(c )]n,p mmii n,p n,p

a

•

nd 

c <n*Chmin [B (cY
lA(c)] if 0 c < ~~~

c >n*chmjnEB(cY
’A (c)] if c > cn,p .

Hence c 
• 

is the unique solution to

• (2.17) c =n*Chmin(B(c)~
lA(c))

As there appeared to be little hope of analytically obtaining solutions

to (2.17), the computer was used to numerically compute the solutions . For

a given n and p, the values of the r.(c) and i. ’(c) (and hence A(c) and B(c))

were calculated by monte carlo methods using 4000 generations of V (for n=8) to

1000 generations of V (for fl 30). (Unfortunately a larger number of generations j

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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• could not be used due to the considerable expense of generating V and per-

forming the calculations involving V ’.) The resulting estimated solutions,

~~~~ to (2.17) were then found and are listed in Table 1. The standard

deviations of these simulated solutions ranged from about .02 (for p=3) to

about .1 (for n-p = 4).

3. Comment s

1. The values c are not the largest values of c for which ~5c isn ‘p
• minimax . Approximations were made in the proof (lines (2.8) and (2.9) ) which

resulted in a smaller than necessary upper bound . If one could somehow

determine the “least favorable” matrix in (2.7), the approximations could

be eliminated and the largest possible value of c obtained .

2. The estimators 6c have a singularity as X~0. There

are numerous ways of eliminating the singularity, one of the simplest being

used in the following estimator:

t - l  -1 -1
= ~ 

_~~~(n*X W X~c)ciQ W )X
xt W_ l x

Through analogy with the known ~ situation, it seems quite likely that 6”~ is

itself riunimax (for 0 ~ c ~ c~ ) and considerably better than
‘p

3. If the linear restriction R0=r ° is thought to hold , where R is

an (mxp) matrix of rank m and r° is an (mxl) vector, then the estimators

and 6V~ can be modified so that their regions of significant risk

• improvement coincide with the linear restriction. Indeed, defining

Y = RX - r°, W~ = RWR t, and a~ = chmin Q~Q
_l
Rt)

_l
W*]/(n_m_l), Theorem 2 of

Berger and Bock (l976b) can be used to show that

= X _cct*Q4Rt(W*)4Y/(Yt(W*)
_1
y]

is minima x if 0 ~ C 

~ 
Cn m • The appropriate modification of 6~~ is the

above estimator with c replaced by min I (n_m_1)Y t(W*)~~Y , c).

~ 

~~I~~• ~•~~I I
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4. If (Q~) has a characteristic root considerably smaller than the other

characteristic roots , then Chmin (Qt) wil l  be small compared to tr (Qj ) .  From

the definition of 
~~~~~~ 

and line (2.2), it is apparent that the improvement

obtained in using 6C will be quite small. The estimator, 6C will therefore

perform best when (Q4) has no exceptionally small roots. (If it is suspected

that a coordinate X1 might give rise to an exceptionally small root of (Qt),

it would probably pay to eliminate that coordinate in the construction of

providing of course that there are at least three coordinates left.)
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